organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sundari Bhaskaran,^a S. Selvanayagam,^a V. Rajakannan,^a D. Velmurugan,^a* K. Ravikumar,^b A. Mohammed Abdul Rasheed^c and P. Rajakumar^c

^aDepartment of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, ^bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ^cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(\text{C}-\text{C}) = 0.003 \text{ Å}$ R factor = 0.050 wR factor = 0.142 Data-to-parameter ratio = 17.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

34,35-Dimethyl-13,20-dioxa-10,23-diaza-3,30dithiapentacyclo[30.4.0.0^{4,9}.0^{14,19}.0^{24,29}]hexatriconta-1(36),4,6,8,14,16,18,24,26,28,32,34dodecane-11,22-dione

The structure of the title molecule, $C_{32}H_{30}N_2O_4S_2$, is stabilized by N-H···O, N-H···S, C-H···S and C-H···O hydrogen bonds. The molecular packing in the crystal is stabilized by intermolecular C-H···O and C-H··· π interactions. Received 7 July 2003 Accepted 28 July 2003 Online 15 August 2003

Comment

Cyclophanes are cyclic systems, consisting of at least one aromatic moiety, bridged by one or more aliphatic chains (De Ridder *et al.*, 2001). Paracyclophane and other π -electron-rich hydrocarbons possessing a cavity-forming topology are known to form endohedral π -complexes with silver and other soft metal atoms (Addad *et al.*, 1983; Heirtzler *et al.*, 1995; Faust, 1995). We report here the structure of the title compound, (I), a cyclophane.

The structure of (I) with the atom-numbering scheme is shown in Fig. 1. The S–C distances [S1-C36 = 1.774 (2) Å,S1-C1 = 1.821 (2) Å, S2-C9 = 1.772 (2) Å and S2-C8 =1.844 (2) Å] are comparable to the mean $C_{phenvl}-S$ [1.773 (9) Å] or Csp³-S [1.819 (19) Å] distances reported by Allen et al. (1987). The widening of the exocyclic angle C24-C25-O26 [124.8 (2)°] and the resultant narrowing of angle C20-C25-O26 [114.8 (2)°] from 120° may be a result of the short H24···H27B [2.13 Å] contact. The torsion angles C13- $C14-N15-C16 = -15.4 (3)^{\circ}, C9-C14-N15-C16 =$ $163.8 (2)^{\circ}$, C36-C31-N30-C28 = 162.5 (2)° and C28- $N30-C31-C32 = -19.0 (3)^{\circ}$ indicate that both the amide planes are twisted away from the attached benzene rings; the dihedral angle between the N15/C16/O17/C18 plane and ring B is $13.3 (1)^{\circ}$ and that between N30/C28/O29/C27 plane and ring is $C17.2 (1)^{\circ}$. The dihedral angle between the benzene rings A and D [87.3 (1)°] and B and C [86.4 (1)°] indicate that they are nearly perpendicular to each other.

The molecular structure is stabilized by $N-H\cdots O$, $N-H\cdots S$, $C-H\cdots S$ and $C-H\cdots O$ hydrogen bonds. In the crystal structure, $C18-H18B\cdots O17^{i}$ hydrogen bonds link inversion-related molecules to form dimers (Fig. 2). The dimers are linked together by $C27-H27B\cdots O29^{ii}$ hydrogen

4720 reflections with $I > 2\sigma(I)$

 $R_{\rm int}=0.017$

 $\theta_{\max} = 28.0^{\circ}$ $h = -10 \rightarrow 11$

 $k = -17 \rightarrow 13$

 $l = -19 \rightarrow 18$

Figure 1

The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

bonds (Table 1). The structure is further stabilized by intermolecular C-H··· π interactions involving H37B and ring D of the molecule translated by a unit along the a axis $[H37B \cdots CgD = 2.79 \text{ Å}, C37 \cdots CgD 3.638 (3) \text{ Å and } C37 - C37 + C$ $H37B \cdots CgD = 148^\circ$, where CgD is the centroid of ring D in the translated molecule].

Experimental

In high dilution condition, benzene-1,2-dioxy-bis(ethanoylchloride) (1 mmol)and 1,2-dimethyl-4,5-bis[mercaptomethyl(2-aminophenyl)]benzene (1 mmol) were cyclized in chloroform in the presence of triethylamine to afford the title compound. The compound was recrystallized by slow evaporation from a chloroform/ hexane (1:1) mixture.

Crystal data

$C_{32}H_{30}N_2O_4S_2$	Z = 2	
$M_r = 570.70$	$D_x = 1.314 \text{ Mg m}^{-3}$	
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation	
a = 8.5860 (7) Å	Cell parameters from 2732	
b = 12.9090 (10) Å	reflections	
c = 14.7552 (11) Å	$\theta = 2.7-26.3^{\circ}$	
$\alpha = 65.065 \ (1)^{\circ}$	$\mu = 0.23 \text{ mm}^{-1}$	
$\beta = 84.701 \ (1)^{\circ}$	T = 293 (2) K	
$\gamma = 76.522 \ (1)^{\circ}$	Needle, colourless	
$V = 1442.1(2) \text{ Å}^3$	$0.25 \times 0.19 \times 0.14$ mm	

Data collection

Bruker SMART APEX CCD areadetector diffractometer ω scans Absorption correction: none 9187 measured reflections 6389 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0775P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	+ 0.1322P]
$wR(F^2) = 0.142$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
6389 reflections	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$
363 parameters	$\Delta \rho_{\rm min} = -0.19 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bonding geometry (Å, °).

D 4	
$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
3.012 (2)	113
2.681 (2)	114
2.999 (2)	113
2.618 (2)	111
3.029 (2)	112
2.904 (4)	120
2.884 (3)	119
3.300 (3)	157
3.398 (3)	161
	3.012 (2) 2.681 (2) 2.999 (2) 2.618 (2) 2.904 (2) 2.904 (4) 2.884 (3) 3.300 (3) 3.398 (3)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) -x, 1 - y, -z.

H atoms were positioned geometrically and were treated as riding on their parent atoms, with C-H (aromatic) = 0.93 Å, C-H (methyl) = 0.96 Å, C-H (methylene) = 0.97 Å and N-H = 0.86 Å. $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H and $1.2U_{eq}(C \text{ or } N)$ for other H atoms. A rotating-group model was used for the methyl groups. Reflections were measured to $\theta_{max} = 28.0^{\circ}$ with 92% completeness, but the data are 99% complete to 25°.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990)'; software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

SSN and DV thank the University Grants Commission (UGC), New Delhi, for financial support under the University with Potential For Excellence Programme.

References

Addad, C. C., Baret, P., Chautemps, P. & Pierre, J. L. (1983). Acta Cryst. C39, 1346–1349.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (2001). *SMART* (Version 5.625) and *SAINT* (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
- De Ridder, D. J. A., Goubitz, K., Fontijn, M., Capkova, P., Dova, E. & Schenk, H. (2001). Acta Cryst. B57, 780–790.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Faust, R. (1995). Angew. Chem. 107, 1559-1562.
- Heirtzler, F. R., Hopf, H., Jones, P. G. & Bubenitschek, P. (1995). *Chem. Ber.* pp. 1079–1082.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (1990). Acta Cryst. A46, C-34.