Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Sundari Bhaskaran, ${ }^{\text {a }}$

S. Selvanayagam, ${ }^{\text {a }}$
V. Rajakannan, ${ }^{\text {a }}$
D. Velmurugan, ${ }^{\text {a }}$ *
K. Ravikumar, ${ }^{\text {b }}$
A. Mohammed Abdul Rasheed ${ }^{\text {c }}$ and P. Rajakumar ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, 'bLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India

Correspondence e-mail: d_velu@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.050$
$w R$ factor $=0.142$
Data-to-parameter ratio $=17.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

34,35-Dimethyl-13,20-dioxa-10,23-diaza-3,30dithiapentacyclo[30.4.0.0 $0^{4,9} .0^{14,19} .0^{24,29}$]hexa-triconta-1(36),4,6,8,14,16,18,24,26,28,32,34-dodecane-11,22-dione

The structure of the title molecule, $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$, is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The molecular packing in the crystal is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions.

Comment

Cyclophanes are cyclic systems, consisting of at least one aromatic moiety, bridged by one or more aliphatic chains (De Ridder et al., 2001). Paracyclophane and other π-electron-rich hydrocarbons possessing a cavity-forming topology are known to form endohedral π-complexes with silver and other soft metal atoms (Addad et al., 1983; Heirtzler et al., 1995; Faust, 1995). We report here the structure of the title compound, (I), a cyclophane.

(I)

The structure of (I) with the atom-numbering scheme is shown in Fig. 1. The $\mathrm{S}-\mathrm{C}$ distances $[\mathrm{S} 1-\mathrm{C} 36=1.774$ (2) \AA, $\mathrm{S} 1-\mathrm{C} 1=1.821(2) \AA, \mathrm{S} 2-\mathrm{C} 9=1.772(2) \AA$ and $\mathrm{S} 2-\mathrm{C} 8=$ $1.844(2) \AA$ are comparable to the mean $\mathrm{C}_{\text {phenyl }}-\mathrm{S}$ [1.773 (9) A] or Csp ${ }^{3}-\mathrm{S}[1.819$ (19) Å] distances reported by Allen et al. (1987). The widening of the exocyclic angle C24-C25-O26 [124.8 (2) ${ }^{\circ}$] and the resultant narrowing of angle $\mathrm{C} 20-\mathrm{C} 25-\mathrm{O} 26\left[114.8(2)^{\circ}\right]$ from 120° may be a result of the short $\mathrm{H} 24 \cdots \mathrm{H} 27 B$ [2.13 \AA] contact. The torsion angles C13$\mathrm{C} 14-\mathrm{N} 15-\mathrm{C} 16=-15.4(3)^{\circ}, \quad \mathrm{C} 9-\mathrm{C} 14-\mathrm{N} 15-\mathrm{C} 16=$ $163.8(2)^{\circ}, \mathrm{C} 36-\mathrm{C} 31-\mathrm{N} 30-\mathrm{C} 28=162.5(2)^{\circ}$ and $\mathrm{C} 28-$ $\mathrm{N} 30-\mathrm{C} 31-\mathrm{C} 32=-19.0(3)^{\circ}$ indicate that both the amide planes are twisted away from the attached benzene rings; the dihedral angle between the $\mathrm{N} 15 / \mathrm{C} 16 / \mathrm{O} 17 / \mathrm{C} 18$ plane and ring B is $13.3(1)^{\circ}$ and that between $\mathrm{N} 30 / \mathrm{C} 28 / \mathrm{O} 29 / \mathrm{C} 27$ plane and ring is $C 17.2(1)^{\circ}$. The dihedral angle between the benzene rings A and $D\left[87.3(1)^{\circ}\right]$ and B and $C\left[86.4(1)^{\circ}\right]$ indicate that they are nearly perpendicular to each other.

The molecular structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{S}, \mathrm{C}-\mathrm{H} \cdots \mathrm{S}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the crystal structure, $\mathrm{C} 18-\mathrm{H} 18 B \cdots \mathrm{O} 17^{\text {i }}$ hydrogen bonds link inversion-related molecules to form dimers (Fig. 2). The dimers are linked together by $\mathrm{C} 27-\mathrm{H} 27 B \cdots \mathrm{O} 29^{\mathrm{ii}}$ hydrogen

Received 7 July 2003

Accepted 28 July 2003 Online 15 August 2003

Figure 1
The molecular structure of the title compound, showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Figure 2
A view of the molecular packing.
bonds (Table 1). The structure is further stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions involving $\mathrm{H} 37 B$ and ring D of the molecule translated by a unit along the a axis $[\mathrm{H} 37 B \cdots C g D=2.79 \AA, \mathrm{C} 37 \cdots C g D 3.638(3) \AA$ and $\mathrm{C} 37-$ $\mathrm{H} 37 B \cdots C g D=148^{\circ}$, where $C g D$ is the centroid of ring D in the translated molecule].

Experimental

In high dilution condition, benzene-1,2-dioxy-bis(ethanoylchloride) $(1 \mathrm{mmol})$ and 1,2 -dimethyl-4,5-bis[mercaptomethyl(2-aminophenyl)]benzene (1 mmol) were cyclized in chloroform in the presence of triethylamine to afford the title compound. The compound was recrystallized by slow evaporation from a chloroform/ hexane (1:1) mixture.

Crystal data
$\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$
$M_{r}=570.70$
Triclinic, $P \overline{1}$
$a=8.5860(7) \AA$
$b=12.9090(10) \AA$
$c=14.7552(11) \AA$
$\alpha=65.065$ (1) ${ }^{\circ}$
$\beta=84.701(1)^{\circ}$
$\gamma=76.522(1)^{\circ}$
$V=1442.1$ (2) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.314 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2732 \\
& \quad \text { reflections } \\
& \theta=2.7-26.3^{\circ} \\
& \mu=0.23 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.25 \times 0.19 \times 0.14 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: none
9187 measured reflections 6389 independent reflections

> 4720 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.017$
> $\theta_{\max }=28.0^{\circ}$
> $h=-10 \rightarrow 11$
> $k=-17 \rightarrow 13$
> $l=-19 \rightarrow 18$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0775 P)^{2}\right. \\
& \quad+0.1322 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.142$
$S=1.01$
6389 reflections
363 parameters
H -atom parameters constrained

Table 1

Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 15-\mathrm{H} 15 \cdots \mathrm{~S} 2$	0.86	2.57	$3.012(2)$	113
$\mathrm{~N} 15-\mathrm{H} 15 \cdots \mathrm{O} 19$	0.86	2.22	$2.681(2)$	114
$\mathrm{~N} 30-\mathrm{H} 30 \cdots \mathrm{~S} 1$	0.86	2.55	$2.999(2)$	113
$\mathrm{~N} 30-\mathrm{H} 30 \cdots \mathrm{O} 26$	0.86	2.18	$2.618(2)$	111
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{~S} 1$	0.93	2.56	$3.029(2)$	112
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{O} 17$	0.93	2.33	$2.904(4)$	120
$\mathrm{C} 32-\mathrm{H} 32 \cdots \mathrm{O} 29$	0.93	2.31	$2.884(3)$	119
$\mathrm{C} 18-\mathrm{H} 18 B \cdots \mathrm{O} 17^{\mathrm{i}}$	0.97	2.39	$3.300(3)$	157
$\mathrm{C}^{\mathrm{i}} 7-\mathrm{H} 27 B \cdots \mathrm{O}^{\text {ii }}{ }^{\text {i }}$	0.97	2.47	$3.398(3)$	161

Symmetry codes: (i) $1-x, 1-y, 1-z$; (ii) $-x, 1-y,-z$.

H atoms were positioned geometrically and were treated as riding on their parent atoms, with $\mathrm{C}-\mathrm{H}$ (aromatic) $=0.93 \AA, \mathrm{C}-\mathrm{H}$ $($ methyl $)=0.96 \AA, \mathrm{C}-\mathrm{H}($ methylene $)=0.97 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$. $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H and $1.2 U_{\text {eq }}(\mathrm{C}$ or N$)$ for other H atoms. A rotating-group model was used for the methyl groups. Reflections were measured to $\theta_{\max }=28.0^{\circ}$ with 92% completeness, but the data are 99% complete to 25°.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 1990)'; software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

organic papers

SSN and DV thank the University Grants Commission (UGC), New Delhi, for financial support under the University with Potential For Excellence Programme.

References

Addad, C. C., Baret, P., Chautemps, P. \& Pierre, J. L. (1983). Acta Cryst. C39, 1346-1349.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (2001). SMART (Version 5.625) and SAINT (Version 6.28a). Bruker AXS Inc., Madison, Wisconsin, USA.
De Ridder, D. J. A., Goubitz, K., Fontijn, M., Capkova, P., Dova, E. \& Schenk, H. (2001). Acta Cryst. B57, 780-790.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Faust, R. (1995). Angew. Chem. 107, 1559-1562.
Heirtzler, F. R., Hopf, H., Jones, P. G. \& Bubenitschek, P. (1995). Chem. Ber. pp. 1079-1082.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

